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Abstract

A fast and exact algorithm is developed for the spin ±2 spherical harmonics transforms on equi-angular pixelizations on
the sphere. It is based on the Driscoll and Healy fast scalar spherical harmonics transform. The theoretical exactness of the
transform relies on a sampling theorem. The associated asymptotic complexity is of order OðL2log2

2LÞ, where 2L stands for
the square-root of the number of sampling points on the sphere, also setting a band limit L for the spin ±2 functions con-
sidered. The algorithm is presented as an alternative to existing fast algorithms with an asymptotic complexity of order
OðL3Þ on other pixelizations. We also illustrate these generic developments through their application in cosmology, for
the analysis of the cosmic microwave background (CMB) polarization data.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In the last few years, the analysis of the temperature anisotropies of the cosmic microwave background
(CMB), together with other cosmological observations, has allowed the definition of a precise concordance
cosmological model. These observations culminated with the release of the three-year data of the Wilkinson
Microwave Anisotropy Probe (WMAP) satellite experiment. The cosmological parameters are now deter-
mined with an unprecedented precision of the order of several percent [1–4]. In the concordance model, the
CMB originates from quantum energy fluctuations defined in a primordial era of inflation. These tiny fluctu-
ations are Gaussian in first approximation. The cosmological principle of homogeneity and isotropy of the
universe is also assumed. The observed radiation is therefore understood as a unique realization of a Gaussian
and stationary (i.e. homogeneous and isotropic) random process on the sphere, which may be completely char-
acterized from its two-point correlation functions, or the corresponding angular power spectra.
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The present concordance values of the cosmological parameters are obtained through a best fit of the the-
oretical temperature angular power spectrum of the CMB with the experimental data. Beyond temperature
anisotropies, i.e. intensity anisotropies, a polarization of the CMB is also present which constitutes a comple-
mentary source of information for cosmology. This polarization is produced through Thomson scattering at
the epoch of recombination. The degree of polarization of the CMB is expected to be of the order of 10 percent
of the temperature anisotropies at small scales, and lower at large scales. As Thomson scattering only pro-
duces linearly polarized light, the CMB radiation is completely described by its temperature T, and its linear
polarization Stokes parameters Q and U [5–10]. First polarization measurements were recently obtained, nota-
bly by the WMAP experiment [11]. Future CMB experiments such as the Planck surveyor satellite experiment
will allow a deeper probe of the temperature and polarization spectra, thanks to improved sensitivity and res-
olution on the whole sky.

From the mathematical point of view, the observable temperature T is a scalar function on the sphere, i.e.
invariant under local rotations in the plane tangent to the sphere at each point. The associated invariant TT

angular power spectrum results from the decomposition of the temperature in scalar spherical harmonics. But
the observable polarization Stokes parameters Q and U transform as the components of a transverse, symmet-
ric, and traceless rank 2 tensor under local rotations. However, scalar electric E and magnetic B polarization
components may equivalently be defined from the parameters Q and U. The associated invariant EE and BB

polarization angular power spectra, and the cross-correlation TE spectrum result from the decomposition of
the combinations Q ± iU in spin ±2 spherical harmonics on the sphere [6]. From the numerical point of view,
the asymptotic complexity associated with a naive quadrature based on the definition of the scalar and spin ±2
spherical harmonics transforms is of order OðL4Þ, where L roughly identifies the square-root of the number of
sampling points on the sphere. Corresponding computation times for the analysis of megapixels all-sky maps
such as those of the ongoing WMAP or the forthcoming Planck experiments are of the order of days. Fast and
precise computation methods for the scalar and spin ±2 spherical harmonics transforms of functions on the
sphere are therefore needed.

Beyond cosmology, an algorithm for the spin ±2 spherical harmonics transforms will find application in the
spectral analysis of arbitrary spin ±2 signals on the sphere, components of transverse, symmetric, and traceless
rank 2 tensor fields under local rotations.

In the present work we develop a fast algorithm for the spin ±2 spherical harmonics transforms of band-
limited functions on the sphere. It is based on an existing fast algorithm for the scalar spherical harmonics
transform. It is defined on 2L · 2L equi-angular pixelizations in spherical coordinates (h,u) on the sphere.
The algorithm is theoretically exact thanks to the existence of a sampling theorem. The associated asymptotic
complexity is of order OðL2log2

2LÞ. Corresponding computation times for megapixels maps are reduced to sec-
onds. The algorithm is presented as an alternative to existing fast algorithms with an asymptotic complexity of
order OðL3Þ on other pixelizations which are widely used in the context of astrophysics and cosmology.

In Section 2, we recall the notion of spin n functions on the sphere. In Section 3, we define and implement a
fast and exact algorithm with complexity OðL2log2

2LÞ for the spin ±2 spherical harmonics transforms on equi-
angular pixelizations. In Section 4, we illustrate the interest of our algorithm in the context of the analysis of
CMB polarization data. We finally briefly conclude in Section 5.

2. Spin n functions on the sphere

In this section, we discuss standard harmonic analysis on the sphere and on the rotation group SO(3). We
also discuss the notion of spin n functions on the sphere and their decomposition in a basis of spin-weighted
spherical harmonics of spin n.

2.1. Standard harmonic analysis

Let the function G(x) be a square-integrable function in L2(S2,dX) on the unit sphere S2. The spherical
coordinates of a point on the unit sphere, defined in the right-handed Cartesian coordinate system
ðo; ox̂; oŷ; oẑÞ centered on the sphere, read as x = (h,u). The angle h 2 [0,p] is the polar angle, or co-latitude.
The angle u 2 [0, 2p] is the azimuthal angle, or longitude. The invariant measure on the sphere reads
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dX = d coshdu. The standard scalar spherical harmonics Ylm(x), with l 2 N, m 2 Z, and jmj 6 l, form an
orthonormal basis for the decomposition of functions in L2(S2,dX) on the sphere [12]. They are explicitly
given in a factorized form in terms of the associated Legendre polynomials P m

l ðcos hÞ and the complex expo-
nentials eimu as
Y lmðh;uÞ ¼
2lþ 1

4p
ðl� mÞ!
ðlþ mÞ!

� �1=2

P m
l ðcos hÞeimu: ð1Þ
This corresponds to the choice of Condon-Shortley phase (�1)m for the spherical harmonics, ensuring the
relation ð�1ÞmY �lmðxÞ ¼ Y lð�mÞðxÞ. This phase is here included in the definition of the associated Legendre
polynomials [13,12]. Another convention [14] explicitly transfers it to the spherical harmonics. Any function
G(x) on the sphere is thus uniquely given as a linear combination of scalar spherical harmonics:

GðxÞ ¼
P

l2N
P
jmj6l

bGlmY lmðxÞ (inverse transform), for the scalar spherical harmonics coefficientsbGlm ¼
R

S2 dXY �lmðxÞGðxÞ (direct transform), with jmj 6 l.

Let now G(q) be a square-integrable function in L2(SO(3),dq) on the group SO(3) of three-dimensional
rotations. Any rotation q 2 SO(3) may be explicitly given in the Euler angles parametrization as
q = (u,h,v), describing successive rotations by the Euler angles v 2 [0,2p[, h 2 [0,p], and u 2 [0, 2p[, around
the axes of coordinate oẑ, oŷ, and oẑ respectively. The invariant measure on the rotation group reads dq = du
dcoshdv. The Wigner D-functions Dl

mnðqÞ, with l 2 N, m; n 2 Z, and jmj, jnj 6 l, are the matrix elements of the
irreducible unitary representations of weight l of the rotation group SO(3), in L2(SO(3),dq). By the Peter-Weyl
theorem on compact groups, the matrix elements Dl�

mn also form an orthogonal basis in L2(SO(3),dq) [12].
They are explicitly given in a factorized form in terms of the real Wigner d-functions dl

mnðhÞ and the complex
exponentials e�imu and e�inv as
Dl
mnðu; h; vÞ ¼ e�imudl

mnðhÞe�inv: ð2Þ
Any function G(q) in L2(SO(3), dq) is thus uniquely given as a linear combination of Wigner D-functions:

GðqÞ ¼
P

l2Nð2lþ 1Þ=8p2
P
jmj;jnj6l

bGl
mnDl�

mnðqÞ (inverse transform), with jmj, jnj 6 l and where bGl
mn ¼R

SOð3Þ dqDl
mnðqÞGðqÞ (direct transform) stands for the with Wigner D-functions coefficients.

2.2. Spin n functions

Let us define a spin n square-integrable function nG(x) in L2(S2,dX) on the sphere. The Euler angles (u,
h,v) associated with a general rotation q in three dimensions may also be interpreted in the reverse order
as successive rotations by u around oẑ, h around oŷ 0, and v around oẑ00, where the axes oŷ 0 � oŷ0ðuÞ and
oẑ00 � oẑ00ðu; hÞ are respectively obtained by the first and second rotations of the coordinate system by u
and h [14]. The local rotations of the basis vectors in the plane tangent to the sphere at x = (h,u) are rotations
around oẑ00, therefore associated with the third Euler angle v. Spin n functions on the sphere nG(x), with n 2 Z,
are defined relatively to their behavior under the corresponding right-handed rotations by v0 as [15–17]:
nG0ðxÞ ¼ e�inv0
nGðxÞ: ð3Þ
The standard square-integrable functions on the sphere considered above are spin 0 or scalar functions. Let
us emphasize that the rotations considered are local transformations on the sphere around the axis
oẑ00 � oẑ0ðu; hÞ, affecting the coordinate v in the tangent plane independently at each point x = (h,u), and
according to v 0 = v � v0. They are to be clearly distinguished from the global rotations by v around oẑ asso-
ciated with the alternative Euler angles interpretation, which affect the coordinates of the points x = (h,u) on
the sphere. Our sign convention in the exponential is coherent with the definition (4) below for the spin-
weighted spherical harmonics of spin n. It is opposite to the original definition [15], while equivalent to recent
notations used in the context of the CMB analysis [6,10].

Recalling the factorized form (2), spin functions are equivalently defined as the evaluation at v = 0 of any

function in L2(SO(3),dq) resulting from an expansion for fixed index n in the Wigner D-functions Dl
mnðu; h; vÞ.

The functions Dl
mnðu; h; 0Þ or Dl�

mð�nÞðu; h; 0Þ thus naturally define for each n an orthogonal basis for the
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expansion of spin n functions in L2(S2,dX) on the sphere. After normalization in L2(S2,dX), the spin-weighted

spherical harmonics of spin n are given in a factorized form in terms of the real Wigner d-functions dl
mnðhÞ and

the complex exponentials eimu as
nY lmðh;uÞ ¼ ð�1Þn
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4p

r
dl

mð�nÞðhÞeimu; ð4Þ
with l 2 N, l P jnj, and m 2 Z, jmj 6 l. In particular, the symmetry properties of the Wigner d-functions [12]

imply the generalized symmetry relation ð�1Þnþm
nY �lmðxÞ ¼ �nY lð�mÞðxÞ. The spin 0 spherical harmonics explic-

itly identify with the standard scalar spherical harmonics for the decomposition of scalar functions: 0Ylm(-

x) = Ylm(x), through the relation dl
m0ðhÞ ¼ ½ðl� mÞ!=ðlþ mÞ!�1=2P m

l ðcos hÞ. Any spin n function nG(x) on
the sphere is thus uniquely given as a linear combination of spin n spherical harmonics:

nGðxÞ ¼
P

l2N
P
jmj6ln

bGlmnY lmðxÞ (inverse transform), for the spin-weighted spherical harmonics coefficients

n
bGlm ¼

R
S2 dXnY �lmðxÞGðxÞ (direct transform), with l P jnj, and jmj 6 l.

Finally, spin n ± 1 functions may be defined from spin n functions through the action of the so-called spin
raising and lowering operators [15,16]. The action of the spin raising ð and lowering �ð operators on a spin n

function nG, giving spin n + 1 and n � 1 functions respectively, is defined as
½ðnG�ðh;uÞ ¼ � sinn h
o

oh
þ i

sin h
o

ou

� �
sin�n hnG

� �
ðh;uÞ ð5Þ
and
½�ðnG�ðh;uÞ ¼ � sin�n h
o

oh
� i

sin h
o

ou

� �
sinn hnG

� �
ðh;uÞ; ð6Þ
with, under rotation by v0 in the tangent plane at x = (h,u): ½ðnG�0ðxÞ ¼ e�iðnþ1Þv0 ½ðnG�ðxÞ and
½�ðnG�0ðxÞ ¼ e�iðn�1Þv0 ½�ðnG�ðxÞ. In these terms, the spin-weighted spherical harmonics of spin n are related to
spin-weighted spherical harmonics of spins n + 1 and n � 1 through the following relations:
½ðnY lm�ðxÞ ¼ ½ðl� nÞðlþ nþ 1Þ�1=2
nþ1Y lmðxÞ ð7Þ
and
½�ðnY lm�ðxÞ ¼ �½ðlþ nÞðl� nþ 1Þ�1=2
n�1Y lmðxÞ; ð8Þ
also implying
½�ððnY lm�ðxÞ ¼ �ðl� nÞðlþ nþ 1ÞnY lmðxÞ: ð9Þ

The corresponding direct relation between the spin-weighted spherical harmonics of spin n and scalar

spherical harmonics reads:
nY lmðxÞ ¼
ðl� nÞ!
ðlþ nÞ!

� �1=2

½ðnY lm�ðxÞ ð10Þ
for 0 6 n 6 l, and
nY lmðxÞ ¼
ðlþ nÞ!
ðl� nÞ!

� �1=2

ð�1Þn½�ð�nY lm�ðxÞ ð11Þ
for �l 6 n 6 0.
These relations between spin-weighted and scalar spherical harmonics are explicitly used in Section 3 for the

development of a fast direct spin ±2 spherical harmonics transforms algorithm.

3. Fast spin ±2 transforms algorithm

In this section, we define and implement a fast and exact algorithm for the computation of the spin ±2
spherical harmonics transforms of band-limited functions on equi-angular pixelizations on the sphere. The
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algorithm is based on the relations between spin-weighted and scalar spherical harmonics established in the
previous section.

3.1. Pixelizations and existing OðL3Þ algorithms

A 2L · 2L equi-angular pixelization in spherical coordinates (h,u) is defined on points xij = (hi,uj) for
0 6 i, j 6 2L � 1, with a uniform discretization of the coordinates: Dh = hi+1 � hi = p/2L and
Du = uj+1 � uj = 2p/2L. The specific choice h0 = p/4L, and u0 = 0 is considered in the following implemen-
tations. It gives hi = (2i + 1)p/4L and uj = 2jp/2L, and excludes the poles of the sampling, which can be con-
venient for numerical reasons. The pixels centers are identified with the sampling points xij defined here above.
The pixels edges are identified by meridians shifted by Dh/2 = p/4L, and parallels shifted by Du/2 = 2p/4L

relative to xij. The poles therefore appear as pixels corners. In the next paragraphs, we analyze the properties
of equi-angular pixelizations which are of interest in the implementation of scalar and spin ±2 spherical har-
monics transforms. These properties are discussed in comparison with the HEALPix pixelization1 (Hierarchi-
cal Equal Area iso-Latitude Pixelization) [18], and the GLESP pixelization2 (Gauss–Legendre Sky
Pixelization) [19,20], which are widely used in astrophysics and cosmology.

Firstly, we discuss the asymptotic complexity for the computation of scalar and spin ±2 spherical harmon-
ics transforms. Let us consider band-limited functions nG(x) on the sphere with band limit L, defined through
the following condition on their scalar (n = 0) or spin-weighted (n 6¼ 0) spherical harmonics coefficients:

n
bGlm ¼ 0 for l P L. For a signal with band-limit L, the a priori complexity associated with the naive compu-

tation of the direct scalar spherical harmonics transform integral on the sphere through simple discretization,
i.e. a quadrature, for all (l,m) with jmj 6 l < L, is naturally of order OðL4Þ. And the a priori complexity asso-
ciated with the naive computation of the direct spin ±2 spherical harmonics transforms integrals on the sphere
through simple quadrature, for all (l,m) with l P 2, and jmj 6l < L, is also naturally of order OðL4Þ. The same
complexity naturally applies to the corresponding inverse scalar or spin ±2 transforms. We consider fine sam-
plings corresponding to megapixels maps on the sphere. In particular, the WMAP experiment currently pro-
vides all-sky maps of around three megapixels. For such a fine sampling defining a band limit around L . 103,
the typical computation time for (2L)2 multiplications and (2L)2 additions of double-precision numbers is of
order of 0.03 s on a standard 2.2 GHz Intel Pentium Xeon CPU. We take this value as a fair estimation of the
computation time required for one integration for given (l,m), or one summation for given (h,u), with an asso-
ciated OðL2Þ asymptotic complexity. Consequently, scalar or spin ±2 spherical harmonics transforms, with an
asymptotic complexity of order OðL4Þ, typically take several days at that band limit L . 103 on a single stan-
dard computer. Considering the analysis of a large number of signals or simulations may become difficultly
affordable in terms of computation times, a fortiori in the perspective of forthcoming experiments with
improved resolution on the sky, such as the Planck satellite experiment which will release all-sky maps of
around fifty megapixels.

The development of a fast and exact algorithm is therefore of great interest for the CMB analysis. The
technique of separation of variables in the scalar or spin ±2 spherical harmonics into the associated Legen-
dre polynomials P m

l ðcos hÞ or the Wigner d-functions dl
m2ðhÞ, and the complex exponentials eimu allows to

decompose the transform as successive transforms in u and h [21,22]. It naturally reduces the asymptotic
complexity for the direct and inverse scalar and spin ±2 spherical harmonics transforms to OðL3Þ. It can
be implemented on any iso-latitude pixelization. Many pixelization schemes have been considered on the
sphere which satisfy this requirement. It is the case for the equi-angular, HEALPix, and GLESP pixeliza-
tions. The algorithms existing on HEALPix or GLESP pixelizations are indeed based on this technique. As
discussed in the next subsection, the asymptotic complexity may be further reduced on equi-angular
pixelizations.

Secondly, we discuss the precision of the computation. A sampling theorem exists on equi-angular pixeli-
zations on the sphere, which represents a generalization of the Nyquist-Shannon theorem on the line. The
1 http://healpix.jpl.nasa.gov/.
2 http://www.glesp.nbi.dk/.

http://healpix.jpl.nasa.gov/
http://www.glesp.nbi.dk/
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sampling theorem states that the scalar spherical harmonics coefficients of a band-limited function on the
sphere may be computed exactly up to a band limit L, through a 2L · 2L equi-angular sampling, as a finite
weighted sum, i.e. a quadrature, of the sampled values of that function [23]. The weights are defined from
the structure of the Legendre polynomials Pl(cosh) on the interval [0,p]. A Gaussian quadrature rule for
the exact computation of spherical harmonics coefficients of band-limited functions also exists on GLESP
pixelizations. The HEALPix implementation of the scalar and spin ±2 spherical harmonics transforms
achieves a very good precision thanks to an iteration process, but it is only approximate from the theoretical
point of view as no sampling theorem is established on such pixelizations.

Thirdly, we comment on the notion of pixel window function. On equi-angular pixelizations, the area A of
pixels varies considerably with the co-latitude, from small pixels close to the poles, to larger pixels around the
equator: A(xij) . sinhiDhDu. This is a major difference with the HEALPix pixelization which defines equal-
area pixels, or the GLESP pixelization which defines nearly equal-area pixels. The constant area of pixels is
an important property allowing the definition of a pixel window function associated to a given pixelization at
a given resolution. The main interest of this concept is to apply a low-pass filtering to the signal, implement-
ing the fact that the pixelized signal is smoothed by integration over the pixel area. The corresponding win-
dow function depends on the pixelization structure and resolution. The procedure of pixelization is
approximated to a correlation of the signal with an axisymmetric beam, and therefore strongly relies on
the assumption of equal-area pixels. We do not consider here the generalization of this concept on equi-angu-
lar pixelizations, where the pixel area varies drastically over the surface of the sphere. We only consider sig-
nals with band limit L on a 2L · 2L equi-angular sampling. In this case, for an application such as the
downsampling, the spherical harmonics coefficients of a signal can be computed exactly thanks to the sam-
pling theorem, and truncated at the desired band limit. In that respect at least, the use of the pixel window
function can be avoided.

Let us finally emphasize that each pixelization scheme (equi-angular, HEALPix, GLESP, . . .) may provide
specific advantages. The new algorithm proposed in the next subsection on equi-angular pixelizations is exact
and has an asymptotic complexity of order OðL2log2

2LÞ. But pixelizations with equal-area pixels represent an
advantage when dealing with noisy data [18]. Our algorithm is therefore to be understood as a simple alter-
native to the existing algorithms. A more detailed comparison of the various algorithms is out of the scope of
the present work.
3.2. New exact OðL2log2
2LÞ algorithm

We recall the following derivative relation on the associated Legendre polynomials [13],
o

oh
P m

l

� �
ðcos hÞ ¼ l cot hP m

l ðcos hÞ � lþ m
sin h

P m
l�1ðcos hÞ; ð12Þ
under the convention that P m
l is defined to be zero for l < jmj. Through this relation, the derivative relations

(10) and (11)between the spin ±2 spherical harmonics ±2Ylm and the scalar spherical harmonics Ylm may be
turned into a simple expression of ±2Ylm as linear combinations without derivatives of Ylm, Y(l�1)m, and
Y(l�2)m. Notice that the same recurrence procedure is used in a different context in [24], in order to express
spin n spherical harmonics nYlm, for any n with 0 6 jnj 6 l, as linear combinations of scalar spherical harmon-
ics. Through the recurrence relation on l satisfied by the associated Legendre polynomials of given m,
ðl� mÞP m
l ðcos hÞ ¼ ð2l� 1Þ cos hP m

l�1ðcos hÞ � ðlþ m� 1ÞP m
l�2ðcos hÞ; ð13Þ
the Y(l�2)m term in the quoted linear combination for ±2Ylm may be cancelled. We finally obtain the following
expression of ±2Ylm as a linear combination of the scalar spherical harmonics Ylm and Y(l�1)m:
�2Y lmðh;uÞ ¼
ðl� 2Þ!
ðlþ 2Þ!

� �1=2

a�ðlmÞðhÞY lmðh;uÞ þ b�ðlmÞðhÞY ðl�1Þmðh;uÞ
h i

; ð14Þ
for l P 2 and jmj 6 l, and with the functional coefficients
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a�ðlmÞðhÞ ¼
2m2 � lðlþ 1Þ

sin2 h
� 2mðl� 1Þ cot h

sin h
þ lðl� 1Þcot2h;

b�ðlmÞðhÞ ¼ 2
2lþ 1

2l� 1
ðl2 � m2Þ

� �1=2

� m

sin2 h
þ cot h

sin h

� �
:

ð15Þ
This relation holds once more under the convention that Ylm is defined to be zero for l < jmj.
Consequently, the direct spin-weighted spherical harmonics transform of a spin ±2 function ±2G may be

written as a linear combination of direct scalar spherical harmonics transforms for three associated scalar
functions. Indeed, if the associated functions are defined by G(p)(h,u) = (cot ph/sinqh)±2G(h,u), for p; q 2 N

and p + q = 2, one gets from relation (14):
�2
bGlm ¼

ðl� 2Þ!
ðlþ 2Þ!

� �1=2

2
2lþ 1

2l� 1
ðl2 � m2Þ

� �1=2

ðdGð1Þ ðl�1Þm � mdGð0Þ ðl�1ÞmÞ
(

þlðl� 1ÞdGð2Þ lm

�2mðl� 1ÞdGð1Þ lm þ ½2m2 � lðlþ 1Þ�dGð0Þ lm

)
; ð16Þ
with l P 2 and jmj 6 l. The relation (14) also implies that the inverse spin-weighted transform of a set of spin

±2 coefficients �2
bGlm (with �2

bGlm ¼ 0 for l P L) may be written as a sum of three inverse scalar spherical har-
monics transforms:
Gðh;uÞ ¼ 1

sin2 h
Aðh;uÞ þ cot h

sin h
Bðh;uÞ þ cot2hCðh;uÞ; ð17Þ
with the scalar functions A, B, and C identified as follows by their scalar spherical harmonics coefficients:
bAlm ¼
ðl� 2Þ!
ðlþ 2Þ!

� �1=2

½2m2 � lðlþ 1Þ��2
bGlm � 2m

ðl� 1Þ!
ðlþ 3Þ!

ð2lþ 3Þ
ð2lþ 1Þ ððlþ 1Þ2 � m2Þ

� �1=2

�2
bGðlþ1Þm;

bBlm ¼
ðl� 2Þ!
ðlþ 2Þ!

� �1=2

½�2mðl� 1Þ��2
bGlm þ 2

ðl� 1Þ!
ðlþ 3Þ!

ð2lþ 3Þ
ð2lþ 1Þ ððlþ 1Þ2 � m2Þ

� �1=2

�2
bGðlþ1Þm; ð18Þ

bClm ¼
ðl� 2Þ!
ðlþ 2Þ!

� �1=2

½lðl� 1Þ��2
bGlm:
As discussed, for functions band-limited at L, the separation of variables allows to compute the direct and
inverse scalar spherical harmonics transforms in OðL3Þ operations. However, a faster algorithm was developed
by Driscoll and Healy on 2L · 2L equi-angular pixelizations on the sphere for the scalar spherical harmonics
transforms [23]. The Fourier transforms in eimu are computed in OðLlog2LÞ operations for each h through
standard Cooley–Tukey fast Fourier transforms. The algorithm also explicitly takes advantage of the recur-
rence relation in l on the associated Legendre polynomials P m

l ðcos hÞ to compute the direct associated Legendre
transforms in OðLlog2

2LÞ operations for each m. In these terms, the direct and inverse scalar spherical harmon-
ics transforms are computed in OðL2log2

2LÞ operations. The computation is theoretically exact thanks to the
sampling theorem on equi-angular pixelizations. Corresponding stable numerical implementations exist in
the SpharmonicKit package [25,26].3 Through the relations (16) and (17), the spin-weighted spherical harmon-
ics transform of a band-limited spin ±2 function with band limit L may consequently also be computed
exactly on a 2L · 2L equi-angular pixelization on the sphere from the Driscoll and Healy fast scalar spherical
harmonics transforms, and with the same asymptotic complexity of order OðL2log2

2LÞ. In terms of our previous
intuitive estimations, we recall that an OðL2Þ scalar product requires the order of 0.03 s on a standard 2.2 GHz
Intel Pentium Xeon CPU, at band limits around L . 103. When compared to the a priori OðL4Þ asymptotic
complexity, the OðL2log2

2LÞ scalar and spin ±2 spherical harmonics transforms algorithms consequently
reduce computation times from days to seconds for the fine samplings considered.
p://www.cs.dartmouth.edu/~geelong/sphere/.

http://www.cs.dartmouth.edu/~geelong/sphere/
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Let us remark that a recurrence relation was proposed in [27] in order to compute spin n spherical harmon-
ics transforms from scalar spherical harmonics transforms. However, the proposed relation explicitly relates

nYlm with n«1Ylm, n«1Y(l�1)m, and n«1Y(l+1)m. The term n«1Y(l+1)m increases the band limit of the functions to
be analyzed to L + 2 after the 2-steps recurrence leading from spin ±2 to scalar spherical harmonics. On
2L · 2L equi-angular pixelizations, the SpharmonicKit package is technically limited to consider coefficients
lower than L, and numerical errors will occur due to the absence of consideration of the coefficients at l = L

and l = L + 1. No such issue occurs from the relation (14) here above, which preserves the band limit L for the
associated scalar functions.

3.3. Numerical implementation

We here report the computation times and memory requirements for the numerical implementation of the
algorithm at band limits up to L = 1024, and briefly discuss the issue of the numerical stability of the imple-
mentation. The implementation is directly based on the fast scalar spherical harmonics transform proposed by
Driscoll and Healy and implemented in the SpharmonicKit package. Computations are performed on a
2.20 GHz Intel Pentium Xeon CPU with 2 Gb of RAM memory. Random band-limited test-functions are
considered. Without loss of generality, these test-functions are defined through their spin-weighted spherical
harmonics coefficients �2

bGlm, with jmj 6 l < L, and l P 2, with independent real and imaginary parts uni-
formly distributed in the interval [�1, +1]. The inverse and direct spin-weighted spherical harmonics trans-
forms are successively computed, giving numerical coefficients n

bH lm.
The computation times given in Table 1 for the direct and inverse spin ±2 transforms are averages over 5

random test-functions. They range between 1.0 · 10�1 s for L = 128 and 2.2 · 101 s for L = 1024. The equality
of computation times for the positive and negative spins is an evident consequence of the similarity of the ±2
cases in the relation (14). The case n = 0 corresponds to the scalar spherical harmonics transform, and is added
for comparison. The related values range between 2.7 · 10�2 s for L = 128 and 6.5 s for L = 1024. To summa-
rize, computation times are of the order of seconds for a band limit L = 1024, in agreement with our previous
intuitive estimations. Both for the direct and inverse transforms, the evolution of the values reported as a func-
tion of the band limit also supports the OðL2log2

2LÞ behavior of the related asymptotic complexity, as illus-
trated Fig. 1 in comparison with an OðL3Þ slope. The ratio of computation times for the cases n = ±2 and
n = 0 also reflects the simple fact that three scalar transforms are computed for each spin ±2 transform.

In the present implementation based on the SpharmonicKit package, the required associated Legendre
polynomials P m

l ðcos hÞ are pre-calculated once for all values of l, h, and m, and stored in RAM memory.
The pre-computation time itself is of order OðL3Þ through the use of a recurrence relation in l on the associated
Legendre polynomials. This pre-computation is by definition not taken into account in the reported compu-
tation times, which consequently remain of order OðL2log2

2LÞ. The number of real values of associated Legen-
dre polynomials P m

l ðcos hÞ stored in RAM memory for all l, h, and m is also of order OðL3Þ. The overall
memory requirements allowing the direct and inverse transforms with the present numerical implementation
correspondingly increase from 5.6 Mb for L = 128, to 32 Mb for L = 256, 220 Mb for L = 512, and 1.2 Gb for
L = 1024. These memory requirements are easily accessible on a single standard computer.
Table 1
Computation times for n = 0 and n = ±2 spherical harmonics transforms measured on a 2.20 GHz Intel Pentium Xeon CPU with 2 Gb of
RAM memory

Spin Time L = 128 (s) Time L = 256 (s) Time L = 512 (s) Time L = 1024 (s)

n = 0 3.7e–02 2.0e–01 1.1e+00 6.5e+00
2.7e–02 1.4e–01 8.1e–01 6.2e+00

n = 2 1.2e–01 6.4e–01 3.6e+00 2.2e+01
1.0e–01 5.0e–01 2.9e+00 2.1e+01

n = �2 1.2e–01 6.4e–01 3.5e+00 2.1e+01
1.0e–01 5.0e–01 2.9e+00 2.1e+01

Times associated with the direct transforms are listed above the corresponding times for the inverse transforms.



Fig. 1. Evolution of computation times t displayed as log2t � log2L for the direct (left) and inverse (right) spin-weighted spherical
harmonics transforms of spins n = 0 (continuous line), n = +2 (continuous line), and n = �2 (dashed line). Computation times are
measured in seconds on a 2.20 GHz Intel Pentium Xeon CPU with 2 Gb of RAM memory, and reported for the band limits
L 2 {128,256,512,1024}. The OðL2log2LÞ asymptotic complexity is clearly illustrated when compared to an OðL3Þ slope (dotted line).
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The absolute and relative numerical errors are defined as maxl;m j n
bGlm � n

bH lm j and maxl;m

j ðn bGlm � n
bH lmÞ=n

bGlm j respectively, where jÆj here denotes the complex norm, and n 2 {0, ±2}. The numerical
errors associated with the OðL2log2

2LÞ spin-weighted spherical harmonics transforms given in Table 2 are aver-
ages for transforms over 5 random band-limited test-functions. Absolute and relative errors do not exceed the
order of 8.4 · 10�9 and 4.2 · 10�7 respectively for band limits up to L = 1024. The OðL2log2

2LÞ implementation
of the spin ±2 spherical harmonics transforms is therefore stable for band limits up to L = 1024. The numer-
ical stability of the algorithm might also have been inferred from the corresponding stability of the Driscoll
and Healy fast direct scalar spherical harmonics transform algorithm, tested for band limits up to
L = 1024 [25,26]. The only potential source of instability is related to the multiplication factor cotph/sinqh
defining the scalar functions associated with a spin ±2 function in the computation of a spin-weighted spher-
ical harmonics transform from the relation (14). Each such factor indeed corresponds to a division by sin2h,
which induces multiplications by numbers of the order of L2 around the poles h = {0,p}, where L is the band
limit considered. However such operations could only produce numerical instabilities for very high band lim-
its, and obviously remain completely safe at L = 1024.

4. Application in cosmology

In this section, we illustrate the interest of the algorithm presented in the previous section in the context of
the analysis of CMB polarization data. The discussion is based on the following introductory papers [5–10]
and reviews [28–31] relative to the CMB polarization analysis.
Table 2
Errors are measured on a 2.20 GHz Intel Pentium Xeon CPU with 2 Gb of RAM memory

Spin Error L = 128 Error L = 256 Error L = 512 Error L = 1024

n = 0 1.8e–10 6.5e–10 2.3e–09 8.4e–09
9.7e–10 5.7e–09 1.6e–08 1.1e–07

n = 2 1.8e–10 6.6e–10 2.4e–09 8.3e–09
7.2e–10 4.2e–09 4.6e–08 4.2e–07

n = �2 1.8e–10 6.6e–10 2.3e–09 8.3e–09
9.8e–10 2.9e–09 3.1e–08 1.2e–07

Absolute errors after inverse and direct transforms are listed above the corresponding relative errors.



2368 Y. Wiaux et al. / Journal of Computational Physics 226 (2007) 2359–2371
4.1. Stokes parameters

The CMB is observed in each direction x = (h,u) of the sky as an incoming radial radiation, to which is
associated a transverse electromagnetic field thus lying in the tangent plane to the sphere at the point consid-
ered. In that plane, we consider the basis ðêh; êuÞ with êh pointing in the direction of increasing h along each
meridian, and êu in the direction of increasing u along each parallel. In this so-called linear polarization basis,
nearly monochromatic radiation around a frequency xr may be decomposed as an electric field with compo-
nents Ehðxr; tÞ ¼ Re½ehðtÞe�ixr t� and Euðxr; tÞ ¼ Re½euðtÞe�ixr t�. The complex amplitudes eh(t) and eu(t) slowly
vary in time relatively to the timescale set by the wave period. The intensity matrix I associated with the radi-
ation simply reads as the time average of the electric field rank 2 tensor ½e�i ðtÞejðtÞ�êi � êj, for i, j 2 {h,u} [5,10].
It thus naturally decomposes on the 2 · 2 matrix basis formed by the identity matrix r0 ¼ I, and the well-
known Pauli matrices (r1,r2,r3), as I = [Ir0 + Ur1 + Vr2 + Qr3]/2. The constants I, U, V, and Q define
the four real Stokes parameters [32] associated with the radiation: I = Æjeh(t)j2 + jeu(t)j2æ, Q =
Æjeh(t)j2 � jeu(t)j2æ, U ¼ he�hðtÞeuðtÞ þ ehðtÞe�uðtÞi, V ¼ ihe�hðtÞeuðtÞ � ehðtÞe�uðtÞi. The brackets ÆÆæ denote time aver-
aging. If the two components eh(t) and eu(t) are correlated, the radiation is said to be polarized. The positive
parameter I may be identified with the overall intensity of radiation, while Q and U identify with the linear
polarizations, and V with the circular polarization. Unpolarized radiation, or natural light, is therefore char-
acterized by Q = U = V = 0.

As functions on the sphere, I(x), Q(x), U(x) and V(x) have different behaviors both under parity, i.e. glo-
bal inversion (Æ00) of the coordinates, and under local rotations (Æ 0) of the basis vectors ðêh; êuÞ in the tangent
plane at x = (h,u). A global inversion of the right-handed three-dimensional Cartesian coordinate system
ðo; ox̂; oŷ; oẑÞ centered on the unit sphere induces the following modification of Cartesian coordinates:
(x00,y00,z00) = (�x, �y, �z). The spherical coordinates x = (h,u) of a given point on S2 change according to
x00 = (h00,u00) = (p � h,p + u). Locally in the tangent plane, the global inversion also implies an inversion of
the basis vector êh : ðê00h; ê00uÞ ¼ ð�êh; êuÞ. The Stokes parameters I and Q have even parity, I00(x00) = I(x) and
Q00(x00) = Q(x), while U and V have odd parity, U00(x00) = �U(x) and V00(x00) = �V(x). Under local rotations
of the basis vectors ðêh; êuÞ by an angle v0, the coordinates~e ¼ ðeh; euÞ of vectors in the tangent plane transform
through~e0 ¼ rv0

	~e, for the standard rotation matrix rv0
, with entries r11

v0
¼ r22

v0
¼ cosv0 and r12

v0
¼ �r21

v0
¼ sinv0.

The Stokes parameters I and V are invariant while Q and U are mixed by local rotations. Equivalently, one
may also rewrite the intensity matrix as
I ¼ 1

2
½Ir0 þ V r2 þ ðQþ iUÞrþ þ ðQ� iUÞr��; ð19Þ
with r± = (r3 « ir1)/2. The Pauli matrices transform as r0l ¼ rv0
	 rl 	 rT

v0
, for l = {0,1,2,3}. The matrices r0

and r2 are thus invariant, while r± transform as r0� ¼ e�2iv0r�. Consequently the four Stokes parameters are
associated with spin functions on the sphere. The intensity I(x) and the circular polarization parameter V(x)
are scalar functions. The combinations (Q ± iU)(x) are spin ±2 functions: ðQ� iUÞ0ðxÞ ¼ e�2iv0ðQ� iUÞðxÞ.
Notice that under parity these two combinations transform in one another: (Q ± iU)00(x00) = (Q « iU)(x) [6,10].

4.2. Angular power spectra

It is assumed that the physics of the CMB is invariant under parity and under local rotations. It is therefore
suitable to relate the observables I, Q, U, and V to invariant physical quantities. The intensity I(x) defines the
CMB temperature anisotropies T(x) and is indeed itself invariant under the transformations considered. As
no circular polarization may arise from Thomson scattering, the CMB polarization is completely described
in terms of the two linear polarization Stokes parameters Q and U. It is equivalently defined by their spin
±2 combinations Q ± iU. Associated polarization components, real scalar functions on the sphere and parity
eigenmodes, are naturally defined from Q ± iU in terms of the raising ð and lowering �ð operators respectively
given in (5) and (6). These components ~EðxÞ ¼ �½�ð2ðQþ iUÞðxÞ þ ð2ðQ� iUÞðxÞ�=2, and ~BðxÞ ¼
i½�ð2ðQþ iUÞðxÞ � ð2ðQ� iUÞðxÞ�=2, have even and odd parities and are therefore referred to as electric
and magnetic components respectively [6]. Let us consider the decomposition of the spin ±2 functions
Q ± iU in spin-weighted spherical harmonics and the relations 2Ylm = N(l2)ð

2Ylm and �2Y lm ¼ N ðl2Þ�ð
2Y lm, with
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N(l2) = [(l � 2)!/(l + 2)!]1/2, induced from (10) and (11). The application of the raising and lowering operators
on this decomposition through the relations (7)–(9) gives b~Elm ¼ bElm=N ðl2Þ and b~Blm ¼ bBlm=N ðl2Þ, where
Fig. 2.
microw
exact O

produc
origina
bElm ¼ �
1

2
þ2

dðQþ iUÞlm þ �2
dðQ� iUÞlm

� �
ð20Þ
and
bBlm ¼
i

2
þ2

dðQþ iUÞlm � �2
dðQ� iUÞlm

� �
; ð21Þ
define the properly normalized real E(x) and B(x) components. These coefficients are explicitly invariant un-
der local rotations.

The random process from which the CMB radiation arises is assumed to be Gaussian and stationary. It is
therefore completely characterized in terms of its temperature and polarization two-point correlation functions.
The corresponding invariant angular power spectra are naturally those associated with the temperature TT, the
polarizations EE and BB, and the cross-correlation between the temperature and electric polarization compo-
nent TE: hbT �l0m0 bT lmi ¼ CTT

l dll0dmm0 , hbE�l0m0 bElmi ¼ CEE
l dll0dmm0 , hbB�l0m0 bBlmi ¼ CBB

l dll0dmm0 , hbT �l0m0 bElmi ¼ CTE
l dll0dmm0 .

These physical quantities are indeed invariant under local rotations and parity. The TB and EB cross-correla-
tions are specifically excluded from the requirement of invariance under parity.

Notice that the E and B components of polarization not only define invariant physical angular power spec-
tra, but they are also associated with different mechanisms of production of the radiation, corresponding to
different theoretical cosmological models. Scalar primordial energy density perturbations only produce the
E polarization component, while vector and tensor (i.e. gravity waves) perturbations produce both E and B

polarization components.
CMB temperature and polarization angular power spectra CTT
l (top), CEE

l (bottom left), and CTE
l (bottom right) of the cosmic

ave background up to a band limit L = 1024 and in lK2. Inverse and direct transforms are successively performed through the
ðL2log2

2LÞ scalar and spin ±2 spherical harmonics transforms on 2L · 2L equi-angular pixelizations on the sphere, in order to
e the estimated spectra (scattered points) from the original spectra of the concordance cosmological model (continuous lines). The
l and estimated spectra coincide within the 3r uncertainty defined by the cosmic variance (grey region).
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4.3. Numerical illustration

Scalar and spin ±2 direct spherical harmonics transforms are required for the estimation of the CMB angu-
lar power spectra from the observables T, Q, and U [6]. The simulation of temperature and polarization maps
from given theoretical angular power spectra requires the corresponding inverse transforms. We apply our
algorithm to simulate CMB maps and angular power spectra, for illustration of its precision and speed
performances.

We start from the temperature and polarization spectra CTT
l , CEE

l , and CTE
l defined by the concordance cos-

mological model which best fits the three-year WMAP data (the BB polarization spectrum is identically null:
CBB

l ¼ 0). These spectra are represented in Fig. 2 up to a band limit L = 1024. Spherical harmonics coefficientsbT lm and bElm are built up as the two marginal complex Gaussian realizations arising from a jointly Gaussian
statistical distribution with variances CTT

l and CEE
l , and a covariance CTE

l . The T, Q, and U maps are then pro-
duced by inverse scalar and spin ±2 transforms, through the relations (20) and (21), with bBlm ¼ 0.

From the maps obtained, we recompute spherical harmonics coefficients bT 0lm, bE 0lm, and bB0lm by direct scalar
and spin ±2 transforms. Within the numerical accuracy of the computer, the B polarization coefficients are

identically null, in perfect agreement with the original data: bB0lm ¼ 0. We finally estimate the temperature

and polarization angular power spectra from those coefficients as: CTT 0

l ¼
Pl

m¼�l j bT 0lmj
2
=ð2lþ 1Þ,

CEE0

l ¼
Pl

m¼�l j bE 0lmj
2
=ð2lþ 1Þ, CTE0

l ¼
Pl

m¼�l
bT 0�lm
bE 0lm=ð2lþ 1Þ, and CBB0

l ¼
Pl

m¼�l j bB0lmj
2
=ð2lþ 1Þ ¼ 0. These

estimators follow chi-square distributions with 2l + 1 degrees of freedom. For X 2 {TT,EE,BB,TE}, this

induces a fractional uncertainty rCX 0
l
=CX

l ¼ ½2=ð2lþ 1Þ�1=2 in the estimation. This cosmic variance is large at

low l and small at high l. Fig. 2 represents the good coincidence between the original and estimated spectra
up to the corresponding uncertainty at each l. The computation time associated with the overall procedure
is 150 s on a 2.20 GHz Intel Pentium Xeon CPU with 2 Gb of RAM memory. In summary, this application
illustrates the good precision and speed performances of our fast and exact algorithm, coherently with the
results of Tables 1 and 2.

5. Conclusion

In conclusion, we developed a fast, exact, and stable algorithm for the spin ±2 spherical harmonics trans-
forms of band-limited functions with band limit L on 2L · 2L equi-angular pixelizations on the sphere. The
algorithm is based the Driscoll and Healy fast scalar spherical harmonics transform algorithm. The exactness
of the computation on equi-angular pixelizations relies on a sampling theorem. The associated asymptotic
complexity is of order OðL2log2

2LÞ. The algorithm is presented as an alternative to existing algorithms with
an asymptotic complexity of order OðL3Þ on the HEALPix and GLESP pixelizations, which are widely used
in the context of astrophysics and cosmology.

The numerical implementation produced confirms the characteristics of the algorithm. Typical computa-
tion times for L = 1024 are of the order of seconds. We also illustrated the interest of the algorithm in the
context of the analysis of CMB polarization data.
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